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Abstract 

There are three types of hypersurfaces in a pseudoconformal space C; of Lorentzian signature: 
spacelike, timelike, and lightlike. These three types of hypersurfaces are considered in parallel. 
Spacelike hypersurfaces are endowed with a proper conformal structure, and timelike hypersur- 
faces are endowed with a conformal structure of Lorentzian type. Geometry of these two types of 
hypersurfaces can be studied in a manner that is similar to that for hypersurfaces of a proper con- 
formal space. Lightlike hypersurfaces are endowed with a degenerate conformal structure. This is 
the reason that their investigation has special features. It is proved that under the Darboux mapping 
such hypersurfaces are transferred into tangentially degenerate (n - 1)-dimensional submanifolds 
of rank n - 2 located on the Darboux hyperquadric. The isotropic congruences of the space C; that 
are closely connected with lightlike hypersurfaces and their Darboux mapping are also considered. 
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1. Introduction 

Submanifolds in a proper conformal space C” were considered in numerous papers. 
Submanifolds in pseudo-Euclidean spaces, in particular, in the Minkowski space, were also 
investigated in great detail (see, e.g., [ON 831). There are three types of submanifolds in a 
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pseudo-Euclidean space: spacelike, timelike, and lightlike. These three types of submani- 
folds were also studied in pseudo-Riemannian spaces of different signatures. In the recently 
published book [DB 961 the geometry of lightlike hypersurfaces and lightlike submanifolds 
of higher codimension in semi-Riemannian (or in another terminology pseudo-Riemannian) 
spaces were investigated in detail. 

However, the property of submanifolds to be spacelike, timelike or lightlike is invariant 
with respect to conformal transformations of the pseudo-Riemannian spaces in which they 
are embedded. This is the reason that it is appropriate to consider all three types of subman- 
ifolds (spacelike, timelike, and lightlike) in the framework of pseudoconformal structures. 

In the present paper we study hypersurfaces in a pseudoconformal space C; of Lorentzian 
signature. We show that the local theory of spacelike and timelike hypersurfaces in the space 
C; can be developed along the same lines as the theory of hypersurfaces in a proper con- 
formal space (Sections 4 and 5). The theory of lightlike (isotropic) hypersurfaces is quite 
different from the theory of hypersurfaces in a proper conformal space. We consider some 
aspects of the theory of lightlike hypersurfaces (Section 6) and isotropic congruences that 
are closely connected with lightlike hypersurfaces (Section 7). The use of pseudoconfor- 
ma1 setting for studying of hypersurfaces allows us to apply the Darboux mapping, prove 
that under this mapping the image of a lightlike hypersurface is a tangentially degenerate 
submanifold in a projective space and describe singular points on a lightlike hypersurface 
and on an isotropic congruence of a pseudoconformal space. 

Note that in [DB 961 the results on lightlike hypersurfaces in semi-Riemannian spaces are 
applied to electrodynamics and general relativity. But since many of these applications and 
the lightlike hypersurfaces themselves are conformally invariant, the results of the current 
paper can be used in similar and possibly other physical applications. 

The isotropic congruences in pseudo-Riemannian spaces are of interest for general 
relativity. In particular, they are connected with construction of the Kerr metric describ- 
ing black holes in the gravitational field (see [Ch 831). 

2. Preliminaries 

It is well known that a geometric model of space-time in special relativity is the Minkowski 
space, i.e., a four-dimensional pseudo-Euclidean space RT of signature (3, 1) (see, e.g., 
[BEE 961). The fundamental quadratic form of this space is reduced to the form 

g = (co’)* + (co*)* + (w3)* - (w4)*, 

where o’, w2, co3 are the space coordinates and w4 is the time coordinate in the tangent 
space TX associated with a point x of the space Rf. (The space TX is the set of vectors of the 
space Rf emanating from the point x.) The relatively invariant fundamental form g defines 
the Lorentzian metric in R;. The group of transformations of the space TX preserving this 
metric is the pseudoorthogonal group 0(3, 1) that is also called the Lorentz group. 

The equation g = 0 determines in the space TX the light cone C, whose genera- 
tors are light trajectories propagating from a source located at the point X. The group of 
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Fig. I 

transformations of the space TX leaving the cone C, invariant is the group G = 0(3, 1) x H, 
where H is the group of homotheties of TX. 

Many results of special relativity, especially results concerning the light propagation, 
are connected with the conformal structure of the space Rf - the structure determined on 
R; by the relatively invariant fundamental form g. In fact, the equation g = 0 defines 
in T,, the light cone C, with vertex at the point x, and the set of these cones is invariant 
under pseudoconformal transformations of the space Rf. Besides the light cones, these 
transformations leave invariant the set of hyperspheres of the space Rf defined in TX by the 
equation g = r’, where the number r2 can be not only positive (as in the Euclidean space) 
but also negative or zero. For r2 < 0, the equation g = r2 determines hyperspheres of 
imaginary radius; for r2 > 0, it determines hyperspheres of real radius; and for r* = 0, it 
determines hyperspheres of zero radius coinciding with the light cones (see Fig. 1 for n = 3). 

Conformal transformations of the space Rf form a group depending on 15 parameters. 
However, this group does not act bijectively in the space Rf. To make this group to act 
bijectively on the set of points of the space Rf, we should enlarge this set by ideal elements: 
a point at infinity y = co and the light cone C, with vertex at the point y. The enlarged 
space Rf is denoted by Cf and is called the pseudoconformal space of signature (3, l), 
Ct = Rf U C,.. After this enlargement, the noncompact space R;’ becomes the compact 
space Cf. This is the reason that such an operation is called the compactification of the 
Minkowski space. 

In what follows we will consider not only four-dimensional space Cf but also n- 
dimensional spaces C; of Lorentzian signature for n ? 3. The fundamental form g defining 
a conformal structure of this space can be reduced to the form 

g = (W’)2 + + (d-1)2 - (Jy. (1) 



M.A. Akivis. VV Goldberg/Journal of Geometry and Physics 26 (1998) 112-126 115 

The space C; admits a one-to-one point mapping onto a hyperquadric Q; of a projective 
space P . ‘+’ The equation of Q; can be reduced to the form 

(xl)2 + + (P)2 - (,y + @)2 - (p+‘)* = 0, (2) 

The projective coordinates x0, . . . , xn+’ of points of the space P”+’ are calledpol~spherical 
coordinates of the elements (points and hyperspheres) of the space C; (see [Kl 261 or 
[AG 961). 

The quadratic form on the left-hand side of Eq. (2) determines the scalar product of 
elements of the space C;. As usual, we denote this scalar product by ( , ). The scalar square 
of a point of the space C; is equal to 0, and it is negative for spacelike hyperspheres and 
positive for timelike hyperspheres. The vanishing of the scalar product of two hyperspheres 
means that the hyperspheres are orthogonal, and the vanishing of the scalar product of a 
point and a hypersphere means that the point belongs to the hypersphere. 

The group of conformal transformations of the space C;l is isomorphic to the group of 
projective transformations of the space Pn+’ sending the hyperquadric Q; to itself. This 
group is denoted by PO(n + 2.2) and is expressed as follows: 

PO(fl + 2,2) := 
SO(n + 2,2) if n is odd, 
O@ + 2 2),Z2 if IZ is even, 

where O(n + 2, 2) and SO(n + 2,2) are the groups of pseudoorthogonal and special pseu- 
doorthogonal transformations of the indicated signature, respectively, and 22 is the cyclic 
group of second-order. In both cases this group depends on i (n + l)(n + 2) parameters. 

The mapping cp : Cy + Q; is called the Darboux mapping, and the hyperquadric Q; 
is called the Darboux hyperquadric. Such a mapping was constructed first for the proper 
conformal three-dimensional space C” (see [Kl26]). Under the mapping cp to the isotropic 
cones C, there correspond the asymptotic cones of the hyperquadric QT. This hyperquadric 
carries real rectilinear generators to which in the space C; there correspond the lines of 
light propagation. The light cones in C; are called also the isotropic cones, and the lines of 
light propagation are called the isotropic lines of the space C;. 

Further, we will apply the method of moving frames. In the space Cy we consider a 
family of conformal frames consisting of two points A0 and A,+1 and n hyperspheres 
A,, r = 1, . . , n, passing through these points. The frame elements of such frames satisfy 
the following analytical conditions: 

(Ao, Ao) = (&+I 3 &+I) = 0, 

(Ao. Ao) = (&+I 1 An+]) = 0, (Ao* Ar) = (&+I 3 Ar) = 0, 

(A,, A,Y) = g,,T, r, s = 1, . . , n. 

In addition, we normalize the points A0 and An+1 by the condition 

(3) 

(4) 

(Ao, &+I) = -1. (5) 

Under the Darboux mapping to such frames there correspond point projective frames in 
the space P n+’ for which the points A0 and A,*+1 lie on the Darboux hyperquadric but do 



116 M.A. Akivis, VV Goldberg/Journal of Geometry and Physics 26 (1998) 112-126 

not belong to any of its rectilinear generators, and the points A, form a basis of the (n - l)- 
dimensional subspace that is polar-conjugate to the straight line AoAn+l with respect to the 
Darboux hyperquadric. With respect to this projective point frame the equation of Darboux 
hyperquadric takes the form 

r grsx x 5 _ 2XuXn+l = 0 (6) 

where the quadratic form grsx’xS is of signature (n - 1, 1). 
The equations of infinitesimal displacement of our conformal frame in the space C; are 

dAc=w;A,, {,n=O,l,..., n+l, (7) 

where w! are differential 1 -forms containing the parameters, on which the group PO(n + 
2,2) depends, and their differentials. 

If we differentiate conditions (3)-(5) by means of Eq. (7), we obtain that the forms w! 
satisfy the following equations: 

0 
%+1 =wo n+’ = 0, 0; + w,n$ = 0, (8) 

Jl+l 
r - gr.s@i = 03 WF - grswi+l = 03 (9) 

dgrs = grtw: + gtsw:. (10) 

In addition, the forms G_$ satisfy the structure equations of the spaces C; and Pnfl : 

dw; = o; A w; (11) 

that are necessary and sufficient conditions for complete integrability of Eq (7). 

3. Hypersurfaces in the space C;l 

In the space C; we consider a hypersurface V”-’ , i.e., a smooth, connected and simply 
connected submanifold of dimension IZ - 1. The conformal structure of the space C; induces 
a conformal structure on the hypersurface Vn-‘. The nature of this structure depends on 
the mutual location of tangent hyperplanes TX ( Vn-‘) = r,, x E Vn-‘, with respect to the 
isotropic cones C, of the space C;. Three “pure” cases of such location are possible: 
(a) At any point x E Vn-’ the hyperplane rX and the isotropic cone C, have only one 

common point x. Then the quadratic form g = g Is, on the hypersurface Vn-’ is 
positive definite, and on Vn-’ a proper conformal structure is induced. A hypersurface 
V”-’ of this type is called spacelike. 

(b) At any point x E V”-’ the hyperplane rX intersects the isotropic cone C, along a real 
cone & of dimension n - 2. Then the quadratic form Eon Vn-’ has signature (n - 2, l), 
and on V”-’ a conformal structure of the same signature is induced. A hypersurface 
V”-’ of this type is called timelike. 

(c) At any point x E Vn-’ the hyperplane rX is tangent to the isotropic cone C,. Then the 
quadratic form g on Vn-’ has signature (n - 2,O). A hypersurface V”-’ of this type 
is called lightlike or isotropic. 
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Fig. 2. Fig. 3 

Fig. 4. 

For the dimension n = 3 these three cases are represented on Figs. 2, 3, and 4. 
The terminology (spacelike, timelike and lightlike) is related to that of general relativity. 

As was noted in Section 1, space-time in special relativity is a Minkowski space. In general 
relativity it is a pseudo-Riemannian space. 

In both cases its metric has the signature (3, 1) (or (1,3) - this depends on the method 
of presentation). In general relativity the isotropic cone C, plays the role of the light cone. 
This cone divides the tangent space TX (C;) (or space TX (C,“_ 1 )) into two domains-internal 
and external. Directions belonging to the first domain are called timelike, and directions 
belonging to the second domain are called spacelike (see Fig. 5). The tangent hyperplane 
T,(V”-‘) to a spacelike hypersurface contains only directions located outside of the cone 
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Fig. 5 

C,T, namely spacelike directions. For a timelike hypersurface V”-’ the tangent hyperplane 
T, ( Vnp’) contains both spacelike and timelike directions. 

Note that hyperspheres of real radius, defined in the space TX by the equation g = m 
where a > 0, are spacelike hypersurfaces without singularities. If a < 0, then the equation 
g = u defines timelike hypersurfaces also not having singularities. Finally, if a = 0, then 
the equation g = a defines a hypersphere of zero radius, i.e., a lightlike hypersurface with 
the only singular point x. For n = 3, such hypersurfaces are presented in Fig. 1. 

Note also that although under conformal transformations hyperspheres are transferred into 
hyperspheres, the radii of these hyperspheres are not invariant. However, under conformal 
transformations the nature of hyperspheres (i.e.. their property to be spacelike, or timelike 
or lightlike) is invariant. 

Besides “pure” hypersurfaces indicated above, there are hypersurfaces having points of 
two or of all three types indicated above. However, we will not consider such hypersurfaces 
in the present paper. 

4. Geometry of spacelike hypersurfaces 

We will study now the geometry of spacelike hypersurfaces V”-’ of the pseudoconfonnal 
space C; in more detail. 

With each point x of the hypersurface Vn-' , we associate a family of conformal frames 
in such a way that A0 = x, the hypersphere A,, is tangent to V”-’ at the point x, and 
the hyperspheres Ai, i = 1. . , II - 1, are orthogonal to Vn-’ at this point. Hence, the 
hypersphere A,, is spacelike, and hyperspheres Ai are timelike. 

After such a specialization of moving frames Eqs. (3) and (5) will not be changed as well 
as the first two groups of Eq. (4) while the third group of Eq. (4) takes the form 

(Ai, Au) = 0, (Ai, Aj) = gij, (An, An) = -1, (12) 
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where (gij) is a nondegenerate symmetric matrix of coefficients of a positive definite 
quadratic form g. Note that the last equation in (12) is obtained by means of an addi- 
tional normalization of the hypersphere A n: this normalization is possible, since A,, is a 
spacelike hypersphere. With respect to this frame the equation of the Darboux hyperquadric 
takes the form 

g;jX’X j _ (Xn)2 _ 2XOXn+l = 0, (13) 

Since the hypersphere A, is tangent to the hypersurface Vnp’ at the point Ao, we have 
(dAo, A,) = 0. By the first equation of (7) this implies 

w;; = 0 (14) 

and 

dAo = o;Ao + o’ Ai, (15) 

where wi = wh. From (15) it follows that the forms wi are linearly independent. 
The family of frames described above is the bundle R’(V”-‘) of first-order frames 

associated with the hypersurface Vn-‘. A base of this frame bundle is the hypersurface 
Vn-‘, and its fiber is the collection of frames with a fixed point x = Ao. The forms wi are 
base,forms of R’ (V”-‘), and the forms ~00, WY, w/ and w,” are itsfiberforms. 

The quadratic form g, defining the conformal structure in the space C; at the point x, is 
expressed now as 

and its restriction to the hypersurface V”-’ becomes 

g = RijWiWj. (16) 

The form g is positive definite and defines a proper conformal structure on the hypersurface 
V”-I. The coefficients g;j of this quadratic form generate a (0. 2)-tensor. This tensor is 
associated with a first-order neighborhood of the hypersurface V”-‘ , since by (15) we have 

g = (dAo. dAo). 

We will not write here all equations which the forms w: satisfy on the hypersurface Vn- ’ and 
equations obtained as differential prolongations of Eq. (14). They differ unessentially from 
similar equations in the theory of hypersurfaces in a proper conformal space C”. The latter 
theory was considered in [A 52,SS 801 (see also [AG 961). This is the reason that we are not 
going to consider in detail this construction as well as other topics of the theory of spacelike 
hypersurfaces which are known for hypersurfaces of the proper conformal space C”. 

5. Geometry of timelike hypersurfaces 

Suppose now that a hypersurface Vn-’ c C; is timelike. Then at any point x E V”-’ its 
tangent hyperplane T, (V”-‘) = 5, is located with respect to the light cone C,V as indicated 
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in Fig. 3. The tangent hyperspheres to the hypersurface V”-’ are timelike. Thus, they can 
be normalized by the condition 

(An, An) = 1. 

A timelike hypersurface Vn-’ is also determined by Eq. (14). 
The fundamental form g defining the conformal structure of the space C; is expressed 

now as 

g = gijO'W' + (W”)2, 

and its restriction g to Vn-’ becomes 

However, unlike for spacelike hypersurfaces, for the timelike hypersurfaces the form g is 
of signature (n - 2, 1). Thus, a timelike hypersurface Vn-’ possesses a pseudoconformal 
structure of Lorentzian signature. 

However, again the system of equations associated with a timelike hypersurface V”-’ 
differs unessentially from similar equations in the theory of hypersurfaces in a proper con- 
formal space Cn . Thus, we will not go into details of investigation of timelike hypersurfaces. 

Note only that since the isotropic cone cX of a timelike hypersurface is real, its mutual 
location with the cone aijw’wj = 0, determined by the second fundamental tensor aij of 
Vn-’ and connected with a second-order neighborhood of a point x E V”-‘, can be more 
diverse than for a hypersurface of the space Cn or for a spacelike hypersurface of the space 
C;. It would be interesting to construct a classification of timelike hypersurfaces based on 
the location of these two cones. 

6. Geometry of lightlike hypersurfaces 

Next we consider lightlike hypersurfaces of the space Ci’. For such hypersurfaces the 
quadratic form S is of signature (n - 2,0), and they carry degenerate conformal structures. 

Our considerations will be simpler if we consider the Darboux mapping of a light- 
like hypersurface V”-’ c C; and all geometric objects associated with this hypersur- 
face. The hypersurface Vn-’ will be mapped onto a submanifold U”-’ of dimension 
n - 1 belonging to the Darboux hyperquadric that is determined in the space Pn+’ by 

Eq. (6). 
As usual we locate the vertex A0 of the moving frame at the varying point x E lJ”-’ and 

theverticesAt,..., A,_1 in the tangent (n - 1)-plane T,(U”-‘). Then the equation 

0;; = 0 (17) 

holds. 
But since the hypersurface Vn-’ is lightlike, the tangent (n - I)-plane TX (U”-‘) is tangent 

to the asymptotic cone C, of the Darboux hyperquadric. The latter cone corresponds to the 
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Fig. 6. 

isotropic cone C, of the space C; . We place the vertex A 1 on the rectilinear generator along 
which the cone C, is tangent to the subspace T,(V-I). We also place the vertex A, on 
the cone C, but outside of this tangent subspace T,(U”-‘) (see Fig. 6). Then in addition 
to Eqs. (3)-(5) which the elements of a moving frame satisfy, we have also the following 
relations: 

(AI, AI) = (A,, A,) = tAo, Al) = (Ao, A,) = 0. (18) 

Moreover, we normalize the points A1 and A,, by the condition 

(Al, A,) = -1. (19) 

By virtue of this, the matrix of the scalar products of the elements of the moving frame 
takes the form 

0 0 0 0 -1 
0 0 0 -1 0 

(At, 4J = (20) 
-1 0 0 0 

-1 0 0 0 0 

where,$,n=O,l,..., n+l;i,j=2 ,..., IZ - 1. As a result, the equation of the Darboux 
hyperquadric takes the form 

gijXfXj - 2XtXn - 2XuX~+t = 0, (21) 

where gijxixj is a positive definite quadratic form. 
It follows that the (n - 3)-dimensional subspace, determined in the space P+l by 

the points Ai, i = 2, . , n - I, does not have real common points with the Darboux 
hyperquadric, and the subspace, which is polar-conjugate to the above subspace with respect 
to this hyperquadric and is determined by the points Ao, Al, A,, and A,+l, intersects this 
hyperquadric in the following ruled surface of second order: 

XIXn + X0X”+’ = 0. 

The above four points are located on this ruled surface as indicated in Fig. 7. 
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Fig. I. 

The equation of the asymptotic cone C, at the point x = A0 of the Darboux hyperquadric 
has the form 

g = KijWfWJ - 2WtW” = 0. (22) 

Since the equation of the hypersurface Vi’-’ has the form (17), the equation of the cone EX 
of the submanifold lJn-’ as well as of that of the hypersurface Vi’-’ has the form 

g=gijW’Wj=O, i,j=2 ,..., n-1. (23) 

This implies that at the point x this light cone has a single rectilinear generator AoA 1 along 
which the subspace 7; (U”-‘) is tangent to the asymptotic cone C,. 

Next we write the equations of infinitesimal displacement of the moving frame associated 
with the point x E Un-’ c Q; c Pn+’ m the form (7) where the l-forms o;-” satisfy the 
Eqs. (8)-( 10) and also the equations obtained by differentiation of Eqs. (18) and (19): 

0; =o, &J; =o, n+l _ w; +w, - 0, W:, -I,;;+’ = 0, WI + 0; = 0. (24) 

If we also differentiate the equation ati = 0, we find that 

WY = gijWi, i,j=2 (..., n-l. 

Since the tensor gij is nondegenerate, it follows from the last equation that 

0; = gQ. (25) 

Next, taking exterior derivatives of Eq. (17) and taking into account the first equation of 
(24), we obtain 

w; A 0& = 0, i =2,...,n- 1. (26) 

Applying Cartan’s lemma to Eq. (26), we find that 

WY = hij&JX, i,j=2 ,.... n-l, 

where hij = hji. Taking into account Eq. (25), we find 

(27) 

where );j = gikhk,j is a symmetric nondegenerate affinor. 
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We consider now the differentials of the points A0 and A 1. By (17) and (7), we obtain 

dAu = w;Ao + w;A, + wbAi, dAt =wyAo+w!A) +w;At. (28) 

From Eqs. (27) and (28) it follows that if w6 = 0, then the point A0 moves along the lightlike 
straight line AoA 1 belonging to the cone C_, and describes the entire line AoA 1. This means 
that the submanifold VP1 is a ruled submanifold. Moreover, the l-form WA defines the 
displacement of the point A0 along the straight line AoA 1. 

Next, Eqs. (28) show that at any point of the straight line AoA), the tangent (n - I)- 
dimensional subspace is fixed and coincides with the subspace Tx(Un-‘) = A0 A Al A 
A2 A ..’ A A,_]. Thus, the submanifold Un-’ is tangentially degenerate of rank IZ - 2 
(see [AG 93, Ch. 4]), since the tangent subspace T,(Un-‘) depends precisely on n - 2 
parameters. 

Let X = A1 + xAo be an arbitrary point of the rectilinear generator AoA) of the sub- 
manifold U”-’ . Its differential is determined by the formula 

dX = (WI + xw$Ai (mod Ao, AI). 

Since, by (27), 

there are singular points on the straight line AoA 1, and their coordinates are determined by 
the equation 

det(J.3. + ~6;) = 0. (29) 

Since the tensor hj is symmetric, this equation has II - 2 real roots if we count each root as 
many times as its multiplicity. 

Thus, we have proved the following result. 

Theorem 1. Under the Darboux mapping, to a lightlike hypersuqace Vn-’ of the pseudo- 
conformal space C;l there corresponds a ruled tangentially degenerate submanijold UnP’ 
of rank n - 2 whose rectilinear generator carries n - 2 real singular points if each of them 
is counted as many times as its multiplicity. These points are the images of singular points 
of the lightlike hypersurface V”-’ 

The loci of singular points on lightlike hypersurfaces VnP’ are submanifolds whose di- 
mension is less than n - 1. These submanifolds are calledfocal submanifolds. The dimension 
of focal submanifolds depends on the multiplicity of their elements - singular points. 

Ifxt is a simple root of Eq. (29), then to this root there corresponds a family of torses (de- 
velopable surfaces) on the submanifold U”-’ which are defined by the system of equations 

WI +x,0& = 0. (30) 

From the well-known theorem of linear algebra on orthogonality of eigendirections of a 
symmetric linear operator, it follows that to distinct roots of Eq. (29) there correspond two 



124 M.A. Akivis, VV Goldberg/Journal of Geometry and Physics 26 (1998) 112-126 

mutual orthogonal families of tomes on Un-‘. It is not difficult also to describe submanifolds 
on V- corresponding to multiple roots of Eq. (29). 

Note that since in general relativity, to lightlike straight lines of the space Cf there 
correspond lines of propagation of light, then to singular points on lightlike hypersurfaces 
there correspond sources of light or points of its absorption, and their focal submanifolds are 
lighting surfaces or surfaces of light absorption. The further study of lightlike hypersurfaces 
in the space Cf can be of interest for general relativity. 

Note that the theory of lightlike hypersurfaces in semi-Riemannian spaces was studied in 
detail in [DB 961 and that some problems of the global theory of such hypersurfaces were 
considered by Kossowski (see, e.g., [Ko 891). 

7. Isotropic congruences 

The notion of isotropic congruences of the space C; is closely connected with the theory of 
isotropic hypersurfaces. An isotropic congruence is an (n - 1) parameter family of isotropic 
straight lines such that through a generic point lying in a sufficiently small neighborhood 
of a straight line of the family there passes a unique straight line of the family. 

To study the isotropic congruences we will apply again the Darboux mapping of the space 
Cy . Consider the set U of rectilinear generators of the Darboux hyperquadric Ql. With any 
rectilinear generator of Ql we associate a family of frames described in Section 6. Then 
with respect to any such frame the Darboux hyperquadric is defined by Eq. (21), and the 
components of infinitesimal displacements of these frames satisfy Eqs. (8)-(10) and (24). 

Consider the rectilinear generator AoA 1. We have 

dAa = o;Ao + w;Al+ obAi + w;fA, (31) 

dAt =cw~Ao+co~A~ +WiAi -o$A,+~, (32) 

where i = 2,..., n - 1. On the hyperquadric Q; the forms wb, &, , and wz are linearly 
independent, and their number is equal to 2n - 3. Thus the set U is a d@erentiable manifold 
of dimension 2n - 3. 

The congruence of isotropic straight lines is an (n - I)-dimensional submanifold S of 
the manifold U. In general, this submanifold can be given on U by the following system of 
n - 2 equations: 

w; = +0; + h’o;;, i,j=l,2 ,..., n-l. (33) 

The forms wb and wi are basis forms of the congruence S. 
On the congruence S Eq. (32) takes the form 

dAl = w:Ao + COMAE + hjo;Ai - wl(A,+l - h’ Ai). (34) 
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In the projective space P ‘+l the straight lines of the congruence in question describe a 
hypersurface that we will also denote by S. As a point set, the hypersurface S coincides 
with an open domain of the hyperquadric QT. 

Let us study properties of the hypersurface S. Eqs. (3 1) and (34) imply that the linear span 
of a first-order neighborhood of the generator AoA 1 coincides with the entire space Pn+' . 

Next all tangent hyperplanes TX(S) at the points of its generator AoAl have the common 
subspace A0 A Al A A2 A ... A A,_]. 

Consider singular points of the hypersurface S. Its point X = Al + xAo is singular if at 
this point the dimension of the tangent subspace T,(S) is less than n. By (31) and (34) we 
have 

dX E (hj + xJj)~iAi + w;f(xA, - An+1 + h’ Ai) (mod Ao, Al). 

Thus, the dimension of the tangent subspace TX(S) is less than n if and only if 

det(),j +x&j) = 0. (35) 

Eq. (35) determines singular points on the hypersurface S. Eq. (35) differs from Eq. (29, 
determining singular points on a lightlike hypersurface of the space C;, only by the fact 
that the affinor kj was symmetric in (29) and is not symmetric in (35). 

Now suppose that the equation W; = 0 is completely integrable. Then the hypersurface 
S is stratified into a one-parameter family of (n - I)-dimensional submanifolds to which 
in the space C; there correspond lightlike hypersurfaces V"-' . 

The condition of complete integrability of the equation w;T = 0 has the form dw" r\w;f = 0. 0 
By structure equations (1 l), this implies that in Eq. (33) the affinor hi is symmetric. As a 
result, all singular points of a rectilinear generator of the ruled hypersurface S are real. 

Thus the following theorem is valid. 

Theorem 2. Any rectilinear generator AoA 1 of the isotropic congruence S carries n - 2 
singular points if each of them is counted as many times as its multiplicity, and some of 
these singular points or all of them can be complex. These singular points are the Darboux 
images of the singular points of the congruence of the space C;. If equation o;f = 0 is 
completely integrable on S, then it determines a stratification of the congruence S into 
lightlike hypersurfaces, and all these singular points are real. 
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